6th INTERNATIONAL CONFERENCE IN MEMORY OF PROFESSOR VALERY KOMAROV

> THE ISSUES IN MECHANICS OF PULP-AND-PAPER MATERIALS

Improving recycled material fines retention using bio-based materials and advanced process solutions for board manufacturing

> Prof. Dr. Klaus Dölle State University of New York (SUNY) College of Environmental Science & Forestry (ESF) Department of Chemical Engineering (CHE)

Introduction SUNY-ESF & Project

Materials

- Paper Testing
- Testing Results
- Conclusion

Next Steps

References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

- Paper Testing
- **Testing Results**
- Conclusion
- References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

The State University of New York (SUNY)

1911

The State University of New York (SUNY)

The State University of New York (SUNY) College of Environmental Science and Forestry (ESF) Department of Chemical Engineering (CHE)

Founded: Programs: 1920, oldest US paper program
Paper Engineering (127 credit hours)
ABET Acredited – Engineering 100%
Bioprocess Enginereing (127 credit hours)
ABET Acredited - Chemical Engineering
Renewable Materials (127 credit hours)
Chemical Engineering (127 credit hours)

Enrolled Studentes:90 undergraduate & 35 graduateFaculty:10 Faculty & 2 LecturersStudenten Faculty Ratio:9:1Institut/Foundation:ESPRA / ESPRI & SPPF / TRINITY

The Research Project – work in progress

- Driven by the need of the paper industry to become more sustainable and eco-friendly by implementing bio-based products in the manufacturing process.
- Paper materials are known for their sustainability, biodegradability, and its eco-efficiency.
- On-line retailing is revolutionizing shopping behaviors all over the world³.
- Paper and cardboard production reached nearly 78 million metric tons in the U.S. and about 420 million metric tons worldwide in 2019³.
- U.S. Consumers spent \$861 billion on the web for retail purchases in 2020, a 44.0% increase compared to \$598 billion in 2019³. Forecasts for 2021 are above 930 billion⁴.
 - Students and personal interest.

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

And then there was this Guy.....

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

Paper Testing

Testing Results

Conclusion

Next Steps

References, Contacts, etc.

Materials

Fiber Material:

OCC fiber material from headbox and or from disk filter, collected or sent to ESF

Woodmeal/woodflour particle size 20μm to 50μm and 40μm to 70μm

Starch:

- Cationic starch a modified corn starch with a positive charge, tapioca starch
- Applied uncooked and cooked⁴

Hydrated Lime:

Dolomitic hydrated lime in powder form for in-situ PCC production^{6,7}.

Filler:

- Commercial available PCC and GCC product in powder form.
- All refining done according to TAPPI T200 sp-06 (Valley beater method)

Introduction SUNY-ESF & Project

Materials

Conclusion

Next Steps

References, Contacts, etc.

Paper Testing

ESF

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Some Testing Methods

TAPPI T205 sp-12:	"Forming handsheets for physical tests of pulp"
TAPPI T211 om-02:	"Ash in wood, pulp, paper and paperboard: Combustion at 525°C"
TAPPI T220 sp-10:	"Physical testing of pulp handsheets"
TAPPI T227 om-09:	"Freeness of pulp (Canadian standard method)"
TAPPI T240 om-07:	"Consistency (concentration) of pulp suspensions"
TAPPI T261 cm-00:	"Fines fraction by weight of paper stock by wet screening" Britt Jar Method
TAPPI T402 sp-13:	"Standard conditioning and testing atmospheres for paper, board, pulp handsheets"
TAPPI T403 om-02:	"Bursting strength of paper"
TAPPI T410 om-08:	"Grammage of Paper and Paperboard (weight per unit area)"
TAPPI T411 om-10:	"Thickness (caliper) of paper, paperboard, and combined board"
TAPPI T412 om-06:	"Moisture in pulp, paper and paperboard"
TAPPI T414 om-12:	"Internal tearing resistance of paper (Elmendorf-type method)"
TAPPI T425 om-06:	"Opacity of paper (15/d geometry, illuminant A/2°, 89% reflectance"
TAPPI T494 om-06:	"Tensile properties of paper and paperboard (const. rate of elong. Appar.)."
TAPPI T538 om-08:	"Roughness of paper and paperboard (Sheffield method)" - Smoothness
TAPPI T547 om-07:	"Air permeance of paper and paperboard (Sheffield method)" - Porosity

Some Testing Methods

TAPPI T205 sp-12:	"Forming handsheets for physical tests of pulp"
TAPPI T211 om-02:	"Ash in wood, pulp, paper and paperboard: Combustion at 525°C"
TAPPI T220 sp-10:	"Physical testing of pulp handsheets"
TAPPI T227 om-09:	"Freeness of pulp (Canadian standard method)"
TAPPI T240 om-07:	"Consistency (concentration) of pulp suspensions"
TAPPI T261 cm-00:	"Fines fraction by weight of paper stock by wet screening" Britt Jar Method
TAPPI T402 sp-13:	"Standard conditioning and testing atmospheres for paper, board, pulp handsheets"
TAPPI T403 om-02:	"Bursting strength of paper"
TAPPI T410 om-08:	"Grammage of Paper and Paperboard (weight per unit area)"
TAPPI T411 om-10:	"Thickness (caliper) of paper, paperboard, and combined board"
TAPPI T412 om-06:	"Moisture in pulp, paper and paperboard"
TAPPI T414 om-12:	"Internal tearing resistance of paper (Elmendorf-type method)"
TAPPI T425 om-06:	"Opacity of paper (15/d geometry, illuminant A/2°, 89% reflectance"
TAPPI T494 om-06:	"Tensile properties of paper and paperboard (const. rate of elong. Appar.)."
TAPPI T538 om-08:	"Roughness of paper and paperboard (Sheffield method)" - Smoothness
TAPPI T547 om-07:	"Air permeance of paper and paperboard (Sheffield method)" - Porosity

Some Testing Methods

TAPPI T205 sp-12: "Forming handsheets for physical tests of pulp"

TAP<u>PI T211 cm-</u>02: <u>"Ash in wood, foulp, caper and paperboard</u>: Combustion at 525°0

[APPI T220 sp-10: "Physic<u>k-resulte-or-outpara...</u>.

TAPPI T240

 TAPPI T261 cm-00: "Fines fraction by weight of paper stock by wet screening" Britt Jar Method

 TAPPI T402

 handsheets

TAPPI T403 on 02: "Bursting strength of paper"

 TAPPI T416 on -08: "Grammage of Paper and Taperboard (weight per unit area)"

 TAPPI T411 om-10:
 Dess (caliper) of paper, paperboard, and combined board"

 TAPPI T412 om-06: "Moisture in pulp, paper and paperboard"

 TAPPI T414 om-12: "Internal tearing ref

TAPPI T425 om-06: "Opacity of paper (15/0 seconds, y, iller thant A/2°, 89% reference

TAPPI T494 or 06: "Tensile properties of paper and paperboard (const. rate of elong. Appar.)." **TAPPI T538 or 08:** "Rouchness of paper and paperboard (Sheffield method)" - *Smoothness* **TAPPI T547 or 07:** "Air permeance of paper and paperboard (Sheffield method)" - *Porosity*

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

T261- Britt Jar Method

- Prepare a master batch of 4 to 10 L at 0.5% consistency
- Set stirrer to 750 rpm or desired speed and locate propeller 1/8" or 3.2 mm above the 200 mesh/ 75 μm screen
- Fill 500 ml of suspension in holding vessel and start stirring
- Open drain valve
- After liquid level is 5 mm add 500 ml of wash water
- After filtrate is clear (5 washing cycles), remaining material is screen over a weighted ashless filter paper 30 μm using a Büchner funnel

T205 – Forming Handsheets

a) TAPPI Handsheet forming , b) Handsheet pressing, c) Handsheet drying

100 g/m² Handsheets were formed at a temperature of 45°C to simulate papermaking process

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

T205 – Forming Handsheets

a) TAPPI Handsheet forming , b) Handsheet pressing, c) Handsheet drying

100 g/m² Handsheets were formed at a temperature of 45°C to simulate papermaking process

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

T205 – Forming Handsheets

a) Dayton photo dryer, b) Control unit, c) Handsheet drying , d) Drying felt/cylinder

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

Paper Testing

Conclusion

Next Steps

References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF **Chemical Engineering**

Making Woodmeal/Woodflour PCC and Other

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Making Woodmeal PCC and Other

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Making In-situ PCC

1) 1000 I tank, 2) Pulp fiber suspension, 3) 0.375 kW propeller mixer 4) 0.75 kW impeller pump, 5) Ball valve, 6) Static mixer, 7) CO_2 Tank with pressure transducer and flow adjustment, 8) lime tank, 9) Dosing valve

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Making In-Situ PCC

1) 1000 I tank, 2) Pulp fiber suspension, 3) 0.375 kW propeller mixer 4) 0.75 kW impeller pump, 5) Ball valve, 6) Static mixer, 7) CO_2 Tank with pressure transducer and flow adjustment, 8) lime tank, 9) Dosing valve

HP 15.0kV x4000 2µm ⊢

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Selected Results- In-Situ PCC Manufacturing

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Selected Results- In-Situ PCC Manufacturing

Prof. Dr. Klaus Dölle

Chemical Engineering

SUNY-ESF

Selected Results- Fine Content Based on Additive Addition (Britt Jar)

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Selected Results- Fine Content Based on Starch Addition (Britt Jar)

Selected Results - Tensile Index [kNm/g]

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

Conclusion

Next Steps

References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF **Chemical Engineering**

Conclusion – What we learned

In-situ PCC can be manufactured of up to 100% filler content based on OD fiber with various raw materials.

TAPPI Handsheet making from up to 20 g/m² containing up to 100% high refined pulp.

- Handsheet forming, starch addition & heat activation is important for testing outcome
- Unmodified pearl starch seems to work best for "our" OCC.

Finer woodmeal works better the coarse woodmeal

High refined pulp increases fine content, paper strength ?

Higher concentrations of dry strength additives may increase mill costs without offering substantial benefits –cost analyses?

Introduction SUNY-ESF & Project

Materials

Paper Testing

Testing Results

Conclusion

Next Steps

References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF **Chemical Engineering**

Next Steps:

Continue handsheet study on recycled material

followed by

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

Paper Testing

Testing Results

Conclusion

Next Steps

Prof. Dr. Klaus Dölle SUNY-ESF **Chemical Engineering**

Some References

- 1. https://www.suny.edu
- 2. https://www.suny.edu/about/fast-facts/
- 3. The Future of Global Packaging to 2022, Smithers Pira
- 4. https://www.statista.com/topics/1701/paper-industry/
- 5. Doelle K, Lee AT, et.al., Laboratory paper machine evaluation of Poly-Lactic Acid (PLA) on paper properties of unbleached recycled pulp, Lignocellulose Journal. 2014;3(1):51-58.
- Dölle K., Bajrami B. (2021). "In Situ Precipitated Calcium Carbonate in the Presence of Pulp Fibers – A Beating Study". *Journal of Engineering Research and Reports*, *20*(8), 1-17.
- Dölle K., Bajrami B. (2021). "Beating of eucalyptus Pulp fibers under Neutral and Alkaline Conditions – A Valley Beater Study". *Journal of Engineering Research and Reports*, *20*(8), 86-96.

Tyler Dominesy, Kai Fischer, Jonas Sonntag and Jacob Darius

Department of Chemical Engineering at ESF

TRINITY Institute

hable Energy and Wi

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Contact Information

ESF

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering

Introduction SUNY-ESF & Project

Materials

Conclusion

Next Steps

References, Contacts, etc.

Prof. Dr. Klaus Dölle SUNY-ESF **Chemical Engineering**

Prof. Dr. Klaus Dölle SUNY-ESF Chemical Engineering